Solubility Equilibrium

Solubility Equilibrium

Understanding the balance between dissolution and precipitation of solids in solution

What is Solubility Equilibrium?

Solubility equilibrium is the dynamic balance established when a solid solute dissolves in a solvent until saturation is reached. At this point, the rate of dissolution equals the rate of precipitation, and the concentration of dissolved ions remains constant.

Solubility equilibrium is a dynamic equilibrium established between a solid solute and its dissolved ions in a saturated solution.

General format: AB(s)⇌A+(aq)+B−(aq)\text{AB(s)} \rightleftharpoons \text{A}^+ (aq) + \text{B}^- (aq)AB(s)⇌A+(aq)+B−(aq)

Examples of Solubility Equilibrium

1. Silver Chloride (AgCl)

AgCl (s)⇌Ag+(aq)+Cl−(aq)\text{AgCl (s)} \rightleftharpoons \text{Ag}^+ (aq) + \text{Cl}^- (aq)AgCl (s)⇌Ag+(aq)+Cl−(aq)

  • Explanation: In water, only a small amount of AgCl dissolves. The system reaches equilibrium where the rate of dissolution equals the rate of precipitation.
  • Ksp (Solubility product) = 1.8×10−101.8 \times 10^{-10}1.8×10−10

2. Calcium Fluoride (CaF₂)

CaF2(s)⇌Ca2+(aq)+2F−(aq)\text{CaF}_2 (s) \rightleftharpoons \text{Ca}^{2+} (aq) + 2\text{F}^- (aq)CaF2​(s)⇌Ca2+(aq)+2F−(aq)

  • Explanation: For each mole of CaF₂ that dissolves, 1 mole of Ca²⁺ and 2 moles of F⁻ ions are formed.
  • Ksp = 3.9×10−113.9 \times 10^{-11}3.9×10−11

3. Barium Sulfate (BaSO₄)

BaSO4(s)⇌Ba2+(aq)+SO42−(aq)\text{BaSO}_4 (s) \rightleftharpoons \text{Ba}^{2+} (aq) + \text{SO}_4^{2-} (aq)BaSO4​(s)⇌Ba2+(aq)+SO42−​(aq)

  • Use: Medical imaging (Barium meals).
  • Ksp = 1.1×10−101.1 \times 10^{-10}1.1×10−10

4. Lead(II) Iodide (PbI₂)

PbI2(s)⇌Pb2+(aq)+2I−(aq)\text{PbI}_2 (s) \rightleftharpoons \text{Pb}^{2+} (aq) + 2\text{I}^- (aq)PbI2​(s)⇌Pb2+(aq)+2I−(aq)

  • Ksp = 7.1×10−97.1 \times 10^{-9}7.1×10−9

5. Iron(III) Hydroxide (Fe(OH)₃)

Fe(OH)3(s)⇌Fe3+(aq)+3OH−(aq)\text{Fe(OH)}_3 (s) \rightleftharpoons \text{Fe}^{3+} (aq) + 3\text{OH}^- (aq)Fe(OH)3​(s)⇌Fe3+(aq)+3OH−(aq)

  • Low solubility in water.
  • Ksp = 6.3×10−386.3 \times 10^{-38}6.3×10−38

6. Magnesium Hydroxide (Mg(OH)₂)

Mg(OH)2(s)⇌Mg2+(aq)+2OH−(aq)\text{Mg(OH)}_2 (s) \rightleftharpoons \text{Mg}^{2+} (aq) + 2\text{OH}^- (aq)Mg(OH)2​(s)⇌Mg2+(aq)+2OH−(aq)

  • Used as an antacid.
  • Ksp = 5.6×10−125.6 \times 10^{-12}5.6×10−12

7. Zinc Hydroxide (Zn(OH)₂)

Zn(OH)2(s)⇌Zn2+(aq)+2OH−(aq)\text{Zn(OH)}_2 (s) \rightleftharpoons \text{Zn}^{2+} (aq) + 2\text{OH}^- (aq)Zn(OH)2​(s)⇌Zn2+(aq)+2OH−(aq)

  • Amphoteric behavior: Dissolves in both acid and base.
  • Ksp = 4.5×10−174.5 \times 10^{-17}4.5×10−17

Common Conceptual Questions Based on Solubility Equilibrium:

  • How does common ion effect reduce solubility?
  • How to calculate solubility from Ksp?
  • How does pH affect solubility of hydroxide salts?

Quick Summary Table

SaltDissociation EquationKsp (approx.)
AgClAgCl ⇌ Ag⁺ + Cl⁻1.8×10−101.8 × 10^{-10}1.8×10−10
CaF₂CaF₂ ⇌ Ca²⁺ + 2F⁻3.9×10−113.9 × 10^{-11}3.9×10−11
BaSO₄BaSO₄ ⇌ Ba²⁺ + SO₄²⁻1.1×10−101.1 × 10^{-10}1.1×10−10
PbI₂PbI₂ ⇌ Pb²⁺ + 2I⁻7.1×10−97.1 × 10^{-9}7.1×10−9
Fe(OH)₃Fe(OH)₃ ⇌ Fe³⁺ + 3OH⁻6.3×10−386.3 × 10^{-38}6.3×10−38
Mg(OH)₂Mg(OH)₂ ⇌ Mg²⁺ + 2OH⁻5.6×10−125.6 × 10^{-12}5.6×10−12
Zn(OH)₂Zn(OH)₂ ⇌ Zn²⁺ + 2OH⁻4.5×10−174.5 × 10^{-17}4.5×10−17

Dynamic Nature of Solubility Equilibrium

This is a reversible process:

Solid (s) ↔ Dissolved ions (aq)

At equilibrium, both dissolution and precipitation occur simultaneously with no net change in concentrations.

Solubility Product Constant (Ksp)

For a salt AB dissociating in water:

AB(s) ↔ A+(aq) + B(aq)

The solubility product is given as:

Ksp = [A+][B]

Smaller Ksp means the substance is less soluble in water.

Factors Affecting Solubility Equilibrium

  • Common Ion Effect: Presence of a common ion reduces solubility by shifting equilibrium to the left.
  • pH of Solution: Salts with acidic/basic components dissolve more/less in acidic/basic environments.
  • Temperature: Generally, solubility increases with temperature (except for some salts).

Ionic Product and Precipitation

The Ionic Product (IP) is the product of ion concentrations at any moment:

  • If IP < Ksp: more solid will dissolve.
  • If IP = Ksp: solution is saturated, at equilibrium.
  • If IP > Ksp: precipitation occurs.

Applications of Solubility Equilibrium

  • Predicting and controlling precipitation reactions.
  • Water purification and softening.
  • Biomineralization (e.g., bone and teeth formation).
  • Preventing industrial scaling in boilers and pipes.

Mastering solubility equilibrium is essential in chemistry, medicine, and engineering.


MCQs: Solubility Equilibrium

  1. What does Ksp represent?
    a) Solubility
    b) Ionic product
    c) Solubility product constant ✅
    d) Precipitation rate
    Explanation: Ksp is the equilibrium constant for the dissociation of a salt in water.
  2. What happens when IP > Ksp?
    a) More solid dissolves
    b) Precipitation occurs ✅
    c) Equilibrium is reached
    d) No change
    Explanation: If IP exceeds Ksp, excess ions combine to form solid precipitate.

True/False Questions

  • Solubility equilibrium is a static condition.
    ❌ False – It is dynamic, with equal rates of dissolution and precipitation.
  • Common ion effect increases solubility.
    ❌ False – It actually decreases solubility.

Quick Quiz

Fill in the blank: When the ionic product equals the solubility product constant, the solution is ________.

Answer: Saturated

Related Topics (Internal Links)

External References

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top